R/autoencoder.R
autoencoder.Rd
Represents a generic autoencoder network.
autoencoder(network, loss = "mean_squared_error")
Layer construct of class "ruta_network"
or coercible
A "ruta_loss"
object or a character string specifying a loss function
A construct of class "ruta_autoencoder"
A practical tutorial on autoencoders for nonlinear feature fusion
Other autoencoder variants:
autoencoder_contractive()
,
autoencoder_denoising()
,
autoencoder_robust()
,
autoencoder_sparse()
,
autoencoder_variational()
# Basic autoencoder with a network of [input]-256-36-256-[input] and
# no nonlinearities
autoencoder(c(256, 36), loss = "binary_crossentropy")
#> Autoencoder learner
#> ----------------------------------------
#> Type: basic
#>
#> Network structure:
#> input
#> dense(256 units) - linear
#> dense(36 units) - linear
#> dense(256 units) - linear
#> dense - linear
#>
#> Loss: binary_crossentropy
#> ----------------------------------------
# Customizing the activation functions in the same network
network <-
input() +
dense(256, "relu") +
dense(36, "tanh") +
dense(256, "relu") +
output("sigmoid")
learner <- autoencoder(
network,
loss = "binary_crossentropy"
)