R/autoencoder_denoising.R
autoencoder_denoising.RdA denoising autoencoder trains with noisy data in order to create a model able to reduce noise in reconstructions from input data
autoencoder_denoising(network, loss = "mean_squared_error", noise_type = "zeros", ...)
| network | Layer construct of class |
|---|---|
| loss | Loss function to be optimized |
| noise_type | Type of data corruption which will be used to train the autoencoder, as a character string. Available types:
|
| ... | Extra parameters to customize the noisy filter:
|
A construct of class "ruta_autoencoder"
Extracting and composing robust features with denoising autoencoders
Other autoencoder variants: autoencoder_contractive,
autoencoder_robust,
autoencoder_sparse,
autoencoder_variational,
autoencoder